

PITSS.CON Application Engineering AE
White Paper 2009

PITSS.CON Application
Engineering AE

Conception and Implementation

PITSS.CON 8.0.0

White Paper, July 2009

© 2009 PITSS PITSS.CON Application Engineering AE PITSS.CON 8.0.0 2 / 7

PITSS.CON Application Engineering AE

White Paper 2009

1. Objective... 3

2. Approach .. 3

3. Concept of the "Application Engineering" AE........ 3

4. Procedure ... 4

4.1. Analysis of the application.................................... 4

4.2. Documentation ... 5

4.3. Code reduction / redundancies............................. 5

4.3.1 Dead code analysis... 5

4.3.2 Determining code redundancies 6

4.4. Analysis of the functionality and its
complexity... 6

5. Estimation form the tool use 6

6. Experience.. 7

© 2009 PITSS PITSS.CON Application Engineering AE PITSS.CON 8.0.0 3 / 7

PITSS.CON Application Engineering AE

White Paper 2009

1. Objective

The present document aims to present the "Application Engineering“ AE
concept based on the PITSS.CON tool in very simple terms. This concept has
been devised to transfer Oracle Forms applications into modern, future-
oriented architectures.

2. Approach

In order to transfer proprietary software, which is mostly Oracle Forms
applications, into a modern technology, you need to understand the
application, functions and processes. As Forms was hailed as the
programming language of the 4th generation decades ago, combining the
graphic interface, process and associated logic in only one source, it must
now be disassembled into these components for the technological
transformation. Manually, this is hardly possible, if so, it can only be done with
a high level of Invest. PITSS.CON offers a technical (automated) approach.

This approach is based on the extraordinarily powerful development
environment of PITSS.CON, which specifically accompanies Oracle Forms
applications along their "life cycle".

The core of PITSS.CON is a repository in which the Forms applications can
be analysed according to their most elementary components, disassembled,
documented, monitored, manipulated and developed further. Based on these
capabilities, Forms programs are disassembled into their components GUI /
processes / logic, in order to then be transferred to the new technologies.

3. Concept of the "Application Engineering" AE

The code based on PL/SQL in a Forms application is identified, analysed,
extracted and transferred to database packages in a targeted manner. A
developer is guided when doing so, so that he or she can transfer the
previous Form logic, consisting of libraries and database objects, into a neat
database structure.

PITSS.CON follows the approach of creating a database structure that is
based on so-called layers. A layer performs a clear functional task and adopts
the associated logic.

The basic layers are:
 DAL Data Access Layer for accessing tables
 BLL Business Logic Layer logic and functions
 SL Service Layer calling up logic

© 2009 PITSS PITSS.CON Application Engineering AE PITSS.CON 8.0.0 4 / 7

PITSS.CON Application Engineering AE

White Paper 2009
The DAL encapsulates all accesses to database objects such as tables and
views. Its methods regulate the writing, reading and/or manipulation of data.
Depending on the complexity of the Forms, the direct table accesses can be
transferred to the DAL in a transition phase. However, this step usually proves
to be difficult in the case of older Forms applications, as attention has not
been paid to the corresponding requirements during the development, e.g. the
availability of primary keys.

The BLL records the logic which is necessary for processing an object/domain
e.g. customers, orders etc. It can consist of several logically separated units
(database packages), so that basic functions can be created, these becoming
combined functions in a next step.

The SL is the service layer which accesses the BLL functions, making these
available to the outside world. This layer builds the services from components
of the BLL layer according to the requirements, and encapsulates these. The
SL can take over the tasks of error handling, logging (user monitoring) as well
as security (access rights), insofar as possible. At the same time, the user and
security concept of the company's SOA strategy should be adopted and
incorporated in the SL in the form of patterns.

The DAL and BLL are created by PITSS.CON in the form of templates,
predefined program structures and revised by developers for implementation
conforming to the strategy.

4. Procedure

The procedure involved with such a complex project, such as extracting and
transferring the business logic to a modern architecture, is outlined in highly
simplified form below.

The PITSS.CON tools "Application Analysis" AA and "Application Engineering" AE
are used more intensely during extraction and processing of the business logic for
the BLL and DAL layers.

By loading all application-relevant data (forms, libraries, database …) into the
repository, PITSS.CON is able to introduce a necessary transparency into the source
code of the individual programs or even the entire application.

4.1. Analysis of the application

A parser disassembles the source code corresponding to the SQL, PL/SQL or Java
syntax into its components. Based on this information, dependencies and uses of
individual components can be determined and depicted. The determination extends
well beyond the simple or first use of objects and represents the entire object
structure involved in the form of a tracking mechanism.

Applications, functions and their dependencies are therefore visible, and can be
documented and processed.

© 2009 PITSS PITSS.CON Application Engineering AE PITSS.CON 8.0.0 5 / 7

PITSS.CON Application Engineering AE

White Paper 2009

4.2. Documentation

Applications which have grown over the years usually become rigid and inflexible in
terms of their complexity, associated with missing documentation. They can only be
modified with a huge amount of effort.

PITSS.CON provides a wide range of documentation or also views of the application,
thereby supporting an optimal transfer of source code to the required database
structures.

The documentation capabilities in printed, file or data form allow objects to be
visualised in their dependencies at any time, and hence understand and transfer
them.

Specifications and detailed effort estimations form a background to discussion in the
teams, render the workflows more efficient and therefore serve as a basis for cost /
time reduction with optimal implementation.

Especially time-intensive processes, such as conversion of a complex application,
are provided with the necessary support.

This therefore ensures a comprehensive documentation in/as:
 Project preparation (analysis and understanding)
 Effort estimation
 Project accompaniment (specifications, considerations)
 Quality assurance (before, during and after the project)
 Revision documentation

4.3. Code reduction / redundancies

Before beginning the development stage, as when converting the application from
the existing source code, crucial importance is attached to reducing the application
scope.

PITSS.CON provides tool support for the code reduction through:
 Dead code analysis
 Determining code redundancies

4.3.1 Dead code analysis

The dead code analysis identifies source code as well as objects (e.g. tables), which
are not used in the application and which can therefore be removed without problem.

Program units are checked to ascertain whether they are used in the entire
application. If not, the non-usage e.g. of SQL libraries, PLL‘s on the level of functions,
packages, … and/or on a library level are depicted.
Significant reductions in the application code at up to 30 percent are therefore
possible and hence worth pursuing before more complex development work. The
time effort is reduced correspondingly.

The reengineering process for applications, the structure and their conversion is
optimally prepared.

© 2009 PITSS PITSS.CON Application Engineering AE PITSS.CON 8.0.0 6 / 7

PITSS.CON Application Engineering AE

White Paper 2009

4.3.2 Determining code redundancies

The further usability of functions and processes is not only a leading concern in
software development, but also one of the key arguments for service-oriented
development. As a result, PITSS.CON places special emphasis on determining
reusable program units.

The analysis methods identify similar or identical program parts. At the same time,
similar or identical statements, functions, declarations and assignments can be
incorporated as decision criteria.

Core processes of the application are recognised, the similar functions or processes
adapted to one another, moved to the database for reuse and written back as a
function call-up.

Considerable importance is also ascribed to this functionality after complete transfer
of the source code to the database, as such a consideration that takes into account
all database objects provides order to the source code again.

4.4. Analysis of the functionality and its complexity

The analysis of the functionality is the next important step when evaluating the
Forms-intrinsic logic for a transfer to the database.

The representative analysis results enable a clear estimation for the:
 Nature of the source codes,
 Complexity of the source codes,
 Evaluation of the transfer effort (traffic light, e.g.: green=simple)
 Frequency of use in the application

At the same time, the analysis process can be controlled via parameters in such way
that the logic for an object, process or functionality is determined specifically:
 Limitation to: Objects (e.g.: tables)

 Modules (forms/libraries/..)
 Limitations to functional logic: Statements

 Functional call-ups
 Database accesses
 Forms build-ins

5. Estimation form the tool use

Transferring a complex application to a new technology is associated with many risks
which mostly result in time and cost overshoots or even end in a halt to the project.

The future technology poses some challenges for companies and their employees
when it comes to learning, mastering and using it. Consultants and architects who
are able to devise such an architecture are required for its success.

The next hurdle not to be underestimated involves implementation of the architecture
aimed for. It is decided here, whether you have to begin with the implementation from
the scratch owing to the absence of documentation or whether you can derive or
even transfer business logic from the enormous investment made in the old
application.

© 2009 PITSS PITSS.CON Application Engineering AE PITSS.CON 8.0.0 7 / 7

PITSS.CON Application Engineering AE

White Paper 2009
If a purely manual implementation is assumed for this project, the requisite
knowledge concerning the nature of the logic, its characteristics and dependencies is
usually absent.

Tool-assisted automation applications, as offered by PITSS.CON, show the
developer the structure and content of his source code, together with all its
dependencies. This enables him or her to compile a comprehensive and
representative documentation, while deriving specifications from this which lead to a
successful and efficient implementation in coordination with the system architects.
Even the implementation is supported by PITSS.CON and secured on a lasting basis
by accompanying analyses.

6. Experience

Thanks to its versatile and powerful features, PITSS.CON is the first choice for
numerous customers, as a tool that is able to analyse, understand and process
Forms applications.

As a result, the latest decisions opting for PITSS.CON are usually made with the aim
of maintaining an application more efficiently, developing it further or transferring it to
new architectures via knowledge of the logical and functional relations.

Some customer decisions:
 Tieto Enator UK Opting on account of migration and analysis
 AXA PT Evaluation for SOA
 Maersk DK Business logic for transfer to SAP
 Drive Solution UK Analysis of the business logic

About PITSS

PITSS is the leading supplier of fully integrated solutions for effective management of Oracle

Forms applications. The innovative PITSS.CON software helps its customers to analyse, migrate,

upgrade and maintain their Oracle Forms applications in its entirety. PITSS thus opens an

evolutionary path for the migration of Oracle Forms applications to a Service Oriented Archi-

tecture (SOA). PITSS.CON has earned a reputation through its high level of automation and

performance. Migration and development projects are run rapidly, economically and reliably

within shortest possible time frames. With PITSS.CON, companies achieve an average cost

saving of 30% for regular development projects and up to 90% for upgrade projects. PITSS is

an Oracle Certified Advantage Partner and has customers in Europe, USA and Asia.

PITSS.CON Application Engineering AE
July 2009
Author: Andreas Gaede

PITSS in Europe
Germany
+49 (0)711 728 752 00
info@pitss.com
www.pitss.com

PITSS in America
USA
+1 248 740 0935
info@pitssamerica.com
www.pitssamerica.com

Copyright 2009, PITSS GmbH

